MARCH MEETING 2016

ALTIMORE, MD

Frequency spectrum analysis on the force contribution in a micronewton electromagnetic thruster

Dimitri Charrier (Author Not Attending)

APS March Meeting 2016

Monday–Friday, March 14–18, 2016; Baltimore, Maryland

Session B46: Instrumentation I: Detectors, Sensors, Signal Processing & Analysis

11:15 AM–2:03 PM, Monday, March 14, 2016 Room: 311

> Sponsoring Unit: GIMS Chair: James Matey, NIST

Principle

Thought experiment initially reported by David P. Goodwin

Electromagnetic energy emitted by an ideal coil:

$$E_{EMCoil} = E_{EMSide1} + E_{EMSide2}$$

EM waves on Side 1 go to vacuum mainly. EM waves on Side 2 go to disc and might be lost in vacuum :

 $E_{EMSide 2} = E_{EMDisc} + E_{EMSide 2lost}$

Energy balance can be written on disc:

 $E_{\rm EMDisc} = W_{\rm Disc} + E_{\rm Heat} + E_{\rm EMWave}$

EM waves create Lorentz force on metallic disc EM waves create eddy currents on metallic disc Eddy currents create Joule heating (black body radiation) Eddy currents might reemit EM waves

A RESULTANT FORCE IS EXERTED IN THE COIL-DISC DEVICE

D.P. Goodwin, A possible propellantless propulsion system, AIP Conf. Proc. 552 (2001) 976–978. doi:10.1063/1.1358037.

- Demonstrate experimentally that electromagnetic waves emitted by a coil submitted to a square voltage signal can produce a force on a coaxial metallic disc rigidly attached to the coil. For this observation, a bench for measuring micrometer displacements was used with a coil-disc device hung on a translation pendulum.
- Develop analytical models predicting the resultant force using different equivalent impedance circuits: R, RL and RLC. For that it is important to consider the so-called square voltage signal in time domain is decomposed in the sum of signal in frequency domain.

Experimental bench for measuring micrometers

C. Coupeau, J.C. Girard, J. Grilhé, Plasticity study of deformed materials by in situ atomic force microscopy, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 16 (1998) 1964. doi:10.1116/1.590234.

Experimental bench for measuring micrometers

2 optical fibers connected to a PC

Wood box laid on a stable table

PC of acquisition

Coil-Disc device hang in a wood box

http://dscharrier.free.fr

Results

A damping of pendulum is visible after an On or Off sequence. Drift lower than 0,2 μ m over 700 s was observed on the whole setup.

D.S.H. Charrier, Micronewton electromagnetic thruster, Appl. Phys. Lett. 101 (2012) 034104. doi:10.1063/1.4737940. D.S.H. Charrier, Erratum: "Micronewton electromagnetic thruster", Appl. Phys. Lett. 105 (2014) 149902. doi:10.1063/1.4897969.

Force calculations

★Different configurations of impedance circuits were used to calculate the current in the force equation $F_{disc} = \frac{1}{t} \int_{0}^{r_2} (2\pi r B_{\rho 1} \int \vec{B}_{z1} d\vec{S}_2 / L_2) dr$

Onset frequency

Onset frequency at circa 170 kHz in case of RL equivalent circuit

- Energy emitted by the coil is partially converted into a force in the coil-disc device: proof-of-concept is shown.
- First analytical model was proposed with a simple R circuit but showed discrepancies between calculations and experimental data until one order of magnitude.
- Improved RL impedance equivalent circuit has been built and has shown a onset frequency at 170 kHz. Therefore further investigations need to take into account the different EM frequencies involved in the device.
- ✤If existing, stray capacitance C from the coil should be much below 1 nF.
- A complete model should take into account the Joule heating (black body emission) coming from eddy currents in the disc. Possibly, finite element analysis is required for a better description.

- 'Flying Circus of Physics' book by Jearl Walker for having inspiring this work. Think out of the box!
- French CPER and Région Poitou-Charentes for post-doc funding.
- APS committee for having accepted the abstract for a talk.